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Abstract: This study presents the first QSAR model for Galectin-3 glycomimetic inhibitors based on docked structures to
the carbohydrate recognition domain (CRD). Quantitative numerical methods such as PLS (Partial Least Squares) and
ANN (Artificial Neural Networks) have been used and compared on QSAR models to establish correlations between mo-
lecular properties and binding affinity values (Kd). Training and validation of QSAR predictive models was performed on
a master dataset consisting of 136 compounds. The molecular structures and binding affinities (Kd) (136 compounds)
were obtained from the literature. To address the issue of dimensionality reduction, molecular descriptors were selected
with PLS contingency approach, ANN, PCA (Principal Component Analysis) and GA (Genetic Algorithms) for the best
predictive Galectin-3 binding affinity (Kd). Final sets comprising 56, 31 and 35 descriptors were obtained with PLS, PCA
and ANN, respectively. The objective of this prototype QSAR model is to serve as a first guideline for the design of novel
and potent Gal-3 selective inhibitors with emphasis on modification at both C-3’ and at O-3 positions  [1].
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INTRODUCTION

Galectins  [2] are a family of 14 protein members that
constitute important targets for therapeutics development
because of their newly identified role in inflammation [3],
immunity [4] and cancer [5-8]. The particularity of galectin-
3 (Gal-3) as compared to the other members of the galectin
family is its monomeric nature in solution. Very few inhibi-
tor design have been made until now [9] for this lectin mem-
ber. Recently, three high resolution X-ray crystal structures
for the human Gal-3 in complex with LacNac the natural
ligand: 1A3K, 1KJL and a more potent inhibitor 1KJR  [10,
11] have been resolved. These Gal-3/ligand structures are
used as templates in the context of a structure-based rational
approach for the design of novel classes of inhibitors. In
general, galectins share similar carbohydrate recognition
domains (CRDs) and affinity for small -D-galactosides, but
show significant differences in binding specificity for more
complex glycoconjugates. In Gal-3 CRD, the majority of
electrostatic interactions involving hydrogen bonding pat-
terns are made between the galactoside residue, and His158,
Asn160 and Arg162 (see Fig. 1). Direct hydrogen bonding to
the protein occurs mostly through galactoside O-3’axial hy-
droxyl group. Two residues with planar-side chains, Tryp181
and His158, are important to align the sugar correctly in the
binding site. In particular, Tryp181 participates in stacking
interactions with carbons C3, C4 and C5 of the galactoside
residue. Also, Gal-3 X-ray crystal structures resolution re-
vealed that three OH groups of the galactoside residue
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Fig. (1). Hydrogen bond networks between LacNac and Galectin-3.

point towards an extension of the lactose/LacNac (N-
acetyllactosamine) binding site [10]. This is thought to be
responsible for conferring selectivity for longer oligosaccha-
rides. Taking advantage of this particular feature, chemical
modifications of LacNac derivatives were made by Sorme et
al. [11-14] at the critical C-3’position of the galactoside
moiety using a benzamide pattern template. Another class of
compound, O-galactosyl aldoximes  [15], have also shown
moderate potency as compared to the LacNac derivatives.
Following this, another class of inhibitors has been investi-
gated based on thio- -D-galactopyranoside template [16].
Hence, the design of small affinity galectins inhibitors is a
new and exciting challenge because of its high potential of
applications in improving human health. Carbohydrates are
notorious for being poor drugs because of their in vivo hy-
drolysis and their failure to cross membrane due to high po-
larity. Synthesis of low molecular weight (MW), high affin-



482 Medicinal Chemistry, 2006, Vol. 2, No. 5 Sirois et al.

ity, and monovalent, and multivalent ligands presents an
important challenge. The advantage of non-O-linked mono-
saccharide derivatives is that they may possess a longer half-
life in vivo, due to lack of hydrolytically labile glycosidic
bonds, and also are less polar which in turn improved cell
permeability. Hence, disaccharide glycomimetics with modi-
fication of glycosidic bonds is an avenue of intense devel-
opment. At the molecular level the challenge lies in the un-
derstanding of the interactions between the lectin and the
saccharide through the complex networks of hydrogen-bonds
as well as hydrophobic, salt bridges, and Van der Waals in-
teractions. The first objective is to provide a rationale means
to model the various types of interactions responsible for
inhibitory activity of newly synthesized glycomimetic com-
pounds against Gal-3. The amount of available molecular
structures, 136 published in total to date, is sufficient to en-
able the development of a first QSAR Gal-3 glycomimetics
theoretical model. This prototype QSAR model is currently
serving as a first guideline for the design of novel and potent
Gal-3 selective inhibitors [1] and new exciting and chal-
lenging work into progress.

MATERIALS AND METHODS

A typical QSAR table is composed essentially of rows
representing the molecules and columns representing de-
scriptor values. The process of building a predictive model
from experimental data can be generalized as follow [17]:

1. Assemble a database of experimental results and mo-
lecular structures.

2. Optimize molecular structures in 3D space.

3. Calculate molecular descriptors for each molecule in the
training set.

4. Estimate the parameters of a chosen numerical model
(PLS, ANN, PCA).

5. Remove outliers from the training set

6. Assess the predictability of the model. If the model is not
satisfactory, return to step 4, or add new structures if
available.

Galectin-3 Glycomimetics Database: Training Set

Surface plasmon resonance experimental binding affinity
Kd values of 136 Gal-3 inhibitors was obtained from littera-
ture [11,15,16]. Each structure was constructed with the
Molecular Operating Environment (MOE) [18] and then
minimized on LacNac and LacNac-Bek template bound to
the Gal-3 three-D structure in order to restraint the domain of
conformational flexibilities to those of the complexed ligands
(see Fig. 2). (LacNac-Bek is the name of the ligand given by
Sorme et al. in the PDB file 1KJR). This rational approach is
justifiable in the context that the CRD allows only one spe-
cific type of anchorage for the galactoside residue of the car-
bohydrate based on the observations obtained from various
galectins X-ray structures [10,11], PDB number 1KJL and
1KJR.

Molecular Descriptors Calculations

Numerical representation of molecules is described with
n-vectors of numbers called molecular descriptors. Molecu-
lar descriptors, initially more than 155, were generated from
the minimized molecular structures in Gal-3 pocket on the
basis of 1D, 2D and 3D formulas. The descriptor types used
to represent the molecular structure belong to the structural,
topological, physical and chemical domains.

Choice of Mathematical Model

PLS: is a linear model in which the experimental result is
expressed as a linear combination of the descriptors plus a
constant. The parameters, or coefficients, for the model are
determined in such a way that the mean squared error be-
tween the training sets experimental results and the models
results is minimized. Given a matrix Xnxp that contains n ob-
servations of p descriptors, and a matrix Ynxm that contains n
observations of m dependent variables, the goal of PLS is to
allow forming a model that will describe their common
structure and allow for the prediction of Y from X (for novel
observations in X) [10]. Essentially, PLS tries to solve the
system:

Ynxm = XnxpBpxm + Enxm (1)

Where n: number of observations, m: number of depend-
ent variables (in our case, m=1 since we are only predicting

Fig. (2). Natural ligand LacNAc (1KJL, Kd = 67 M); a potent analog modified at O-3’ LacNAc-Bek (Kd = 0.88 M); and the structure of a
Galactoside scaffold with two pharmacophores X and Y at C-1 and O-3.
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Kd), p: number of descriptors, E is the error residual matrix
and B is the regression coefficient matrix (whose determina-
tion leads to the formation of a predictive model).

ANN: it is said that ANN “mimic” brain function [19].
ANN, as any other artificial intelligence method, inherently
uses learning. This is achieved through an initial training
session at the end of which internal associations - relating
patterns of inputs and outputs - are built. Subsequently, ANN
can make a prediction based on new inputs or “unknowns”.
In feed forward neural networks, the neurons are organized
in the form of layers. The neurons in a layer get input from
the previous layer and feed their output to the next layer. In
this kind of networks connections to the neurons in the same
or previous layers are not permitted. The last layer of neu-
rons is called the output layer and the layers between the
input and output layers are called the hidden layers. The in-
put layer is made up of special input neurons, transmitting
only the applied external input to their outputs. In a network
if there is only the layer of input nodes and a single layer of
neurons constituting the output layer then they are called
single layer network. If there are one or more hidden layers,
such networks are called multilayer networks (MLP). The
MLP [19], in general, is the most popular network structure.
It is dependent on iterative training (slow in cases) but it
produces networks that are compact and fast in their execu-
tion (following training). We tested MLPs with 3 or 4 layers,
featuring the hyperbolic tangent as activation function inter-
connecting these layers. Radial basis function [20] (RBF)
networks originate from the regularization theory for solving
ill-conditioned problems. They tend to perform slower than
MLPs but they train fast. Conversely to the MLPs, the effec-
tiveness of RBF is inversely proportional to the increasing
number of input variables. However, inclusion of unneces-
sary inputs makes them more sensitive which may have an
indicative value in unexploited datasets like ours. General-
ized regression neural networks [21] (GRNN) train fast
(when N<1000 approximately) and perform satisfactorily,
yet they execute slowly. GRNNs augment the pros and cons
of RBFs thus contrasting MLPs. GRNNs use Bayesian tech-
niques to estimate the expected value of an output variable
dependent on a given input.

Selection of Molecular Descriptors

Within the framework of a linear QSAR model (PLS),
contingency analysis was performed to assist in the selection
of subsets of descriptors from a set of more than 155 de-
scriptors to complement the 38-VSA descriptors [18]. The
VSA set of descriptors is a Subdivided Surface Areas type
descriptors based on an approximate accessible van der
Waals surface area. QSAR-contingency performs a bivariate
contingency analysis for each descriptor and the activity or
property value [18]. Contingency analysis attempts to meas-
ure the degree to which two random variables are dependent.

QSAR Models

Various QSAR models are obtained from suggested de-
scriptors from an initial contingency analysis. For the rela-
tive importance of each descriptor, it is obtained from the
absolute values of the normalized coefficients divided by the
absolute value of the largest normalized coefficient. The

quality of the linear-based model is assessed with r2: corre-
lation coefficient, and RMSE: root mean square error.

Validation of each tested model is made with:

• $PRED a value of the model,

• $RES the difference between the value of the model
and the activity field (log (Kd)),

• $Z-SCORE the absolute difference between the
value of the model and the activity field (log (Kd)), di-
vided by the square root of the mean square error of the
data set.

Cross-Prediction is obtained with:

• $XPRED the value of the model under a leave-one-
out cross validation scheme.

• $XRES the difference between the value of the
model under a leave-one-out cross validation scheme and
the activity field.

• $XZ-SCORE the absolute difference between the
value of the model under a leave-one-out cross validation
scheme and the activity field (log (Kd)), divided by the
square root of the mean square error of the data set.

The two Z-Score fields $Z-SCORE and $XZ-SCORE can
be thought of as the number of standard deviations away
from the mean and are used for outlier detection.

RESULTS AND DISCUSSION

Data Set Training Compounds

The two most challenging steps for developing a QSAR
model are the selection of a set of training compounds hav-
ing sufficient molecular diversity and the selection of an
appropriate set of molecular descriptors describing the activ-
ity. A first molecular database of 119 compounds has been
built from literature available affinity Kd data. They com-
prise 59 compounds with C-3’position based on a benzamide
pattern template [11], 52 compounds withC-1’ based on O-
galactosyl aldoximes [15] and 8 compounds with thio- -D-
galactopyranoside template [16]. These compounds were
synthesized with the following rationale. Replacement of N-
acetyl glucosamine by a non-carbohydrate aglycon to render
more drug-like with higher affinity; thioglycosides: to confer
stability towards acidic and enzymatic hydrolysis; anomeric
oxime ethers: to improve stability against enzymatic hy-
drolysis: i.e. stable at physiological pH. Then, 17 more com-
pounds were added to the initial database and they comprised
12 triazol-1thio-galactosides [16] and 5 C2-symmetrical thio-
galactoside bis-benzamido derivatives [22], for a total of 136
compounds.

Molecular Descriptors Selection

Molecular descriptors selection is intimately related with
accuracy, stability and interpretability of a model. There are
so many thousands descriptors available that the selection of
an appropriate set is nowadays dependent on the type of
mathematical model, algorithm used and class of drug target.
Within that context Labute [23] has developed a set of de-
scriptors for wide applications. These descriptors are based
upon atomic contributions to Van derWaals area, logP (octa-
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nol/water), molar refractivity and partial charge. From these
contributions three sets of descriptors have been defined:
SlogP_VSA (10) , SMR_VSA (8) and PEOE_VSA (14)
which captured hydrophilic and hydrophobic effects, po-
larisability, and electrostatic interactions, respectively. Ac-
cording to Labute, each of these descriptor sets is derived
from the Hansch and Leo descriptors [24] and taken all to-
gether they define a 32 dimensional chemistry space. Six
more VSA-types descriptors were also added which repre-
sents the partial charges Q_VSA-type.

Table 1 shows the validity of the QSAR models based
initially on the 38-VSA descriptors set. QSAR PLS-based
models produce very good correlation and cross-correlation
coefficients but fail for cross-correlation RMSE deviation for
a training set of 119 compounds with a value of 1.78298.
Adding more compounds to the training dataset improve
slightly cross-correlation RMSE deviation: 1.78298 versus
1.76659 for 119 and 136 compounds, respectively. This sug-
gests that linear QSAR model based on VSA descriptors set
is insufficient to describe the binding affinity of gly-
comimetics to their binding sites. Different domains of de-
scriptor types needed to be explored. For this purpose, force-

field types were selected after performing contingency
analysis on various descriptor domains (see Table 2). The
predictive capacity of the model was improved giving a
cross-validated RMSE of 1.45851. Hence, PLS-contingency
method was applied to produce the best possible PLS model
with RMSE and r2 correlation coefficient and cross – corre-
lation values of 0.65408, 0.96337, 1.03636 and 0.90939,
respectively. PCA, GA, and contingency-based methods
were used subsequently to identify other categories of de-
scriptors from a set of 155 descriptors (see Table 2). The 31
descriptors set obtained with GA produced a PLS model
with RMSE and r2 correlation coefficient and cross– corre-
lation values of 0.90278, 0.94399 1.07127 and 0.80876, re-
spectively. The 17 descriptors set obtained with PCA pro-
duced a model with RMSE and r2 correlation coefficient and
cross –correlation values of 0.89581, 0.92098, 1.10385 and
0.96062, respectively. For this ensemble o f Gal-3 gly-
comimetic derivatives, PLS-contin-gency produces a very
good model, followed by the GA approach and then by PCA.
Regarding the molecular descriptors, force-field charge de-
scriptors based on PEF95SAC force field [25] were amongst
the highest ranked. It is important to mention that this force
field has been specifically developed to model carbohydrates

Table 1. Number of Descriptors and Compounds with Their RMSE and r
2
 Values

#descriptors /

# compounds

RMSE r
2

Correlation coefficient

RMSE

Cross-

Validated

r
2

Cross-Validated

38/119 0.9736 0.91532 1.78298 0.74002

44/119 0.8872 0.92968 1.58980 0.79679

81/119 0.7378 0.95099 2.64724 0.55579

38/129 1.0435 0.897975 1.59498 0.77162

81/129 0.77437 0.94388 1.81190 0.74006

38/136 1.17578 0.881626 1.76659 0.74188

66/136 0.80366 0.94251 1.59166 0.81689

81/136 0.83729 0.96359 1.45851 0.65207

56/136Contingency 0.65408 0.96337 1.03636 0.90939

31/136 GA 0.90278 0.94399 1.07127 0.80876

17/136 PCA 0.89581 0.92098 1.10385 0.96062

35/136 GA and NN 0.8107606 0.9554546 0.3748076 0.9899365

35/136 GA and NN 0.7698428 0.9593227 0.5226707 0.9829417

35/136 GA and NN 0.5657788 0.9787421 0.7049245 0.9375967

35/136 GA and NN 1.099722 0.9268441 0.6359181 0.9626615

35/136 GA and NN 1.152485 0.9056143 0.4901789 0.9878652

35/136 GA and NN 0.7285886 0.9645584 0.8220331 0.9292236

35/136 GA and NN 0.6313888 0.9688487 0.9416063 0.9326992

35/136 GA and NN 0.7631699 0.9597963 0.5527562 0.9760612
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and alcohols. The ab initio charges used in the force field are
quite similar to those used in most established water poten-
tials. PEF95SAC is based on Consistent Force Field (CFF)
optimized potential energy parameters for alcohols and most
naturally occurring carbohydrates and has been applied to
and tested on -lactose. Hence, descriptors selection involv-
ing charge components is very dependent on the choice of
the force field made. Traditionally, QSAR statistical meth-
ods - like PLS and Principal Component Analysis (PCA) -
are used in drug design and optimization. PLS methods are
limited in describing the inherent non-linearity between the

descriptors because they are of a reductionism nature and do
not take into account inter- correlations.

ANN/GA

One method that has gained popularity recently is the one
based on GA and ANN. For this purpose, a combine
ANN/GA methodology was applied to both the selection of a
reduced minimal set of descriptors from the 56 suggested by
the PLS-contingency analysis and to the development of an
improved model. GA/ANN suggested a subset of 35 de-
scriptors, which has been evaluated on 10 random split sets
of the master dataset of 136 compounds consisting of 110/26
training/validating. To address the non-linear nature of data,
we tested different structures of ANN i.e. multi layer per-
ceptron (MLP) with 3 or 4 layers, radial basis function
(RBF), and generalized regression neural networks (GRNN).
Often a number of variables may carry - to some extent - the
same information as other variables. This problem is known
as multi-co linearity and the only remedy known is to de-
crease the dimensionality of the problem in question by se-
lecting only the most significant variables in relation to the
predicted outcome. Genetic algorithms and neural networks
used in combination to identify the most significant descrip-
tors of the compounds in the training and validating split
datasets have demonstrated its strength as compared to linear
approach such as PLS described above. As anticipated, com-
bination applications of GA and ANN on the split datasets
suggested a ranking of significance for each one of the
chemical descriptors (see Table 3).

This study’s objective is to identify and select a set of
molecular descriptors for a universal glycomimetic class of
Gal-3 inhibitors rather than focusing on a particular subclass
at a particular position modification. The notion of relevance
to receptor affinity of a collection of descriptors is difficult
to quantify and our analysis is based on the ranking and the
kind of descriptors suggested by ANN. Suggested descrip-
tors belong to the original 38-VSA types in combination
with others and they are describing: 1) physical properties
such as heat of formation (kcal/mol) and total energy calcu-
lated using the PM3 Hamiltonian (PM3_HF and PM3-E), log
of the octanol/water partition coefficient (log (o/w): logP),
polar surface area calculated using group contributions to
approximate the polar surface area from connection table
information only (TPSA) 2)  surface area descriptors based
on force field charges (FF_VSA), volume and shape de-
scriptors such as water accessible surface area calculated
using a radius of 1.4 A for the water molecule (ASA), Van
der Waals volume (VDW_VOL) 3) distance matrix descrip-
tors such as molecular diameter and radius 4) pharma-
cophore atom type descriptors such as number of hydropho-
bic atoms (A_HYD) 5) finally, the sum of hardness of all
atoms in molecule (SUM_HARD).

Direct Electrostatic Contributions

Recent work [31] has suggested that the underlying
atomic contributions to partial charge, molar refractivity and
logP are relevant to receptor affinity. The PEOE_VSA (Par-
tial Equalization of Orbital Electronegativities [26]) are in-
tended to capture direct electrostatic interactions. The PEOE

Table 2. Sets of Type of Descriptors Evaluated and the Total

Number of Descriptors

Descriptor type sets Number of descriptors

PEOE 19

SLOGP 11

SMR 8

Total 38

FF 18

PM3 7

Vsa 3

Total 66

Q_VSA 5

dipole 4

vdw 2

diameter 1

radius 1

bpol 1

a_IC 1

mr 1

a_hyd 1

rgyr 1

ASA 1

TPSA 1

Total 86

Inductive[49] 50

ASA_ 4

Lipinski 2

SMB 5

directional 3

various 5

Total 155
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Table 3. Descriptors Description [18] and Their Relative Ranking According to Their Contribution

Ranking

Abbreviation Descriptors Description

Average Min Max

PEOE_VSA_+3 Partial Equalization of Orbital Electronegativities. Sum of vi where qi is in the range [0.15,0.20) 2,2 1 3

SLOGP_VSA2 Sum of vi such that Li is in (-0.2,0] 3,6 2 7

SLOGP_VSA0 Sum of vi such that Li <= -0.4 3,8 1 12

FF_VSA-4 Binned VDW surface area descriptors based on forcefield charges. Total negative 4 vdw surface area 7,2 2 15

DIAMETER Molecular diameter 7,4 1 21

A_HYD Number of hydrophobic atoms 8,8 7 10

PEOE_VSA+4 Partial Equalization of Orbital Electronegativities Sum of vi where qi is in the range [0.20,0.25). 13 5 23

PM3_HF The heat of formation (kcal/mol) calculated using the PM3 Hamiltonian [MOPAC] 13,8 5 27

FF_VSA_HYD Binned VDW surface area descriptors based on forcefield charges. Total hydrophobic vdw surface area 14,6 9 25

PEOE_VSA-3 Partial Equalization of Orbital Electronegativities Sum of vi where qi is in the range [-0.20,-0.15) 14,8 10 20

SMR_VSA0 Sum of vi such that Ri is in [0,0.11] 15 5 27

SMR_VSA3 Sum of vi such that Ri is in (0.35,0.39] 15,2 3 26

FF_VSA_NEG Binned VDW surface area descriptors based on forcefield charges. Total negative vdw surface area. 15,4 7 27

ASA Water accessible surface area calculated using a radius of 1.4 A for the water molecule. 16 8 31

VDW_VOL Van der Waals volume 16,2 4 35

SMR Molecular refractivity 17,4 8 27

PEOE_VSA_POL Partial Equalization of Orbital Electronegativities 18,4 7 34

RADIUS Molecular radius 18,4 12 28

SUM_HRD Sum of hardness of all atoms in molecule 18,6 6 33

SMPSSGMM Sum of all positive Sigma (mol->atom) in molecule 20 7 28

LOGP_O_W Log of the octanol/water partition coefficient 20 4 29

SMR_VSA1 Sum of vi such that Ri is in (0.11,0.26] 20,6 9 32

Q_VSA_POL Total polar van der Waals surface area 20,6 12 26

FF_VSA+1 Binned VDW surface area descriptors based on forcefield charges. Total positive 1 vdw surface area' 21,6 12 30

SLOGP_VSA4 Sum of vi such that Li is in (0.1,0.15] 22 15 29

PEOE_VSA_+2 Partial Equalization of Orbital Electronegativities Sum of vi where qi is in the range [0.10,0.15) 22,6 13 32

PEOE_VSA_+1 Partial Equalization of Orbital Electronegativities Sum of vi where qi is in the range [0.05,0.10) 24,2 14 32

SLOGP_VSA_8 Sum of vi such that Li is in (0.30,0.40] 24,4 15 33

FF_VSA_POL Total polar vdw surface area based on forcefield charges 25,6 14 32

TPSA Total polar surface area 26,4 17 35

FF_VSA_-3 Total negative 3 vdw surface area 26,6 18 35

PM3_E The total energy (kcal/mol) calculated using the PM3 Hamiltonian [MOPAC]. 26,6 19 34

SLOGP_VSA_9 Sum of vi such that Li > 0.40 29 21 34

Q_VSA_POS Total polar van der Waals positive 29,4 19 35

FF_VSA_+2 Total positive 2 vdw surface area 30,6 24 35
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method of calculating charges is an iterative method in
which charge is transferred between bonded atoms until
equilibrium. Although the notion of partial charges is widely
used it is an intellectual concept because it depends on the
model and the manners the whole electron distribution in a
molecule is divided. What is important to see at this point is
the contribution of the charge distribution within the context
of glycomimetics. For this, PEOE and FF types are impor-
tant descriptors, which encapsulate charge distribution, and
this is directly related to enthalpic energy contributions.

Hydrophobicity (Lipophilicity)

Hydrophobicity and water solubility are properties which
are used as early as ADME screens [27,28] to reject probable
development failures early on stage. Study findings sug-
gested that hydrophobicity is an important contributor that
controls the binding activity of Gal-3 inhibitors. Non-
covalent interactions such as lipophilicity and shape of the
molecule account for most of the activity against Gal-3. In
drug design the thermodynamic binding of a drug to its
therapeutic target includes free energy of binding, enthalpy
and entropy. Enthalpy contribution is expressed through the
drug-target interaction relative to the solvent. The primary
contribution comes from hydrogen bonding and Van der
Waals interactions. Entropy contribution is primarily due to
hydrophobic interactions caused by an increase in the solvent
entropy from burial of hydrophobic groups of the drugs and
by release of water molecules upon binding and also from a
small loss of conformational degrees of freedom of the can-
didate molecule. A drug with favorable entropy indicates
that the binding is driven by hydrophobic interactions and
low hydrogen bound formation. This type of drugs is hydro-
phobic and poorly water-soluble and is also conformation-
ally restraint. This entails that they lack a potential of adapt-
ability and consequently are highly susceptible to cause drug
resistance [29] and side effects [17].

Binding Affinity Prediction

Electrostatic interactions such as hydrogen bonding be-
tween the Gal-3 and its natural ligand lactose occur between
the O-3 hydroxyl group and surrounding groups Arg 162 and
Glu184 (Fig. 3): and the endocyclic oxygen of galactoside
moiety. These interactions create a network of three salt
bridges, which are a common feature in carbohydrate-lectin
recognitions. Semi-empirical calculations correlate the modi-
fications done at the anomeric position with the charge den-
sity on the O-3 oxygen [1].

DISCUSSION

Intuitively, molecular entities should possess specific
features, which classify them into drugs or non-drugs [30].
First and foremost, these features have to be specific to their
target. Thus, drugs are subdivided into antiviral, antiretrovi-
ral, antibiotics, antineoplastics, etc. Secondly, the structural,
physical and chemical features of a particular class of com-
pounds should be related to its biological activity as well as
the binding interaction, which encompasses molecular rec-
ognition between the ligand and the receptor. Characterizing
a class of molecule to a specific activity is another major
challenge in drug identification and optimization [31]. The

pharmaceutical industry routinely uses classical approaches
based on: 1) High Throughput Screening (HTS) for identi-
fying new class of compound [32,33] and 2) Linear Quanti-
tative Structure Activity relationship (QSAR) techniques for
optimizing lead candidates [24,28,34-36] in drug discovery
and development, and to analyze data sets of compounds. It
has also been helpful in understanding chemical–biological
interactions in the drug-design process. It has also been util-
ized for the evaluation of ADMET phenomena in many or-
ganisms and whole animal studies  [24,28,34-36]. Most
commonly used QSAR techniques are primarily linear meth-
ods that correlate the changes at a specific point on a small
molecular structure. This linear approach is limited because
non-linear effects within the overall molecule potency is not
considered. Furthermore, these methods are of a reduction-
ism nature because interrelations between the various types
of descriptors are excluded from the analysis. For a candi-
date molecule to be considered as an inhibitor for a specific
target it has to attain a threshold experimental value in the
range of the nanomolar (nM) concentration. However, the
structural, chemical and physical characteristics leading to
this threshold value have to be defined. Several characteris-
tics can be considered individually as per the classical QSAR
approach [17,34,37,38]. However, the synergistic effect of
these characteristics is greater than that of their individual
contribution. The complexity of these interrelations differ-
entiates a potent inhibitor versus a non-potent one. Unfortu-
nately, recent discoveries are not always leading to the crea-
tion of more affordable and safer drugs for patients. Moreo-
ver, new therapeutic development processes are becoming
increasingly challenging, complex and costly. In particular,
we aim to address one of the recent concern on the pipeline

Fig. (3). Connolly surface using a space grid of 0.75 colored by
Active Lone Pair showing the CRD pocket and O-3 into a hydrogen-
bonding network. The bleu regions are hydrophobic, the red are
hydrophilic, while the white represent regions through which hydro-
gen bonds (hydrogen atoms colored yellow) are likely to form for
novel Galectin-3 inhibitors.
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problem expressed in the FDA report [39], i.e. the causes of
recent slowdown, instead of expected acceleration, in inno-
vative medical therapies reaching patients. The approach that
is taken therein find its justification on the Critical Path Ini-
tiative (CPI) put in place recently by the FDA which de-
mands a rationale approach for a fast an accurate means of
predicting the biological properties of small molecules to be
developed since prototyping is both expensive and time con-
suming [39]. The price tag for the development of a new
drug can goes as high as $800 million. It follows that green
chemistry is becoming more and more a principle for the
twenty first century. Within this green context approach in
mind, compounds are design and tested virtually before be-
ing synthesized. This rational approach not only permit
economy of time and money but more importantly the
avoidance of the uses of chemical materials that will need to
be wasted eventually or recycled [40]. Structural bioinfor-
matics has been applied to timely derive the 3D structures of
some functionally important proteins, helping to understand
their action mechanisms and stimulating the course of drug
discovery [40-48]. Thus, a rational approach including com-
putational chemistry, structural bioinformatics, and chemin-
formatics encompasses designing, synthesising and testing,
instead of synthesizing, testing and designing. For this
purpose hybrid QSAR-ANN models for galectin-3 gly-
comimetics inhibitors have been developed and presented
therein to predict the complex inhibition activity of new
molecules that belong to this particular class of compounds.

CONCLUSION

Study findings suggested that PEOE and FF types are
important descriptors, which encapsulate charge distribution
that is directly, related to enthalpic energy contributions and
also hydrophobicity is an important contributor that controls
the binding activity of Gal-3 inhibitors. Non-covalent inter-
actions such as lipophilicity and shape of the molecule ac-
count for most of the activity against Gal-3. High affinity
and selectivity, synthetic accessibility, no chemically reac-
tive group, oral bioavailability, favorable pharmacokinetics,
metabolism, elimination pathway, lack of side effects, lack
of toxic effects are currently considered in upstream of the
drug development process of novel glycomimetics Gal-3
inhibitors with emphasis on modification at both C-3’ and at
O-3 positions [1] and continuing work in progress. By com-
bining chemistry based enumeration, filtering and structure
based evaluation we plan to go rapidly from a chemical hit
structure with a known synthetic route pathway to a model of
small molecule targeted library into a protein active site.
With this approach chemists are able to select a set of tar-
geted compounds to being synthesized and tested further in
biological assays. This process is repeated until compounds
with a satisfactory ADMET property and activity profiles are
obtained. The platform that we are currently developing
should allow the organisation of data from various domains
and also the possibility to integrate the data from various
parts of the platform through the development of hybrid
QSAR and artificial intelligence. In the future we plan to
develop novel QSAR models from publicly available screens
that will serve as benchmarks for various diseases such as
SRAS, influenza, cystic fibrosis, and cancer.
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